2-Segal objects and algebras in spans
نویسندگان
چکیده
We define a category parameterizing Calabi–Yau algebra objects in an infinity of spans. Using this category, we prove that there are equivalences categories relating, firstly: 2-Segal simplicial C to Span(C); and secondly: cyclic Span(C).
منابع مشابه
Weak amenability of Segal algebras
Let G be a locally compact abelian group, and let p 2 1; 1). We show that the Segal algebra S p (G) is always weakly amenable, but that it is amenable only if G is discrete.
متن کاملBiflatness and Pseudo-amenability of Segal Algebras
We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, L (G), and the Fourier algebra, A(G), of a locally compact group, G. Barry Johnson introduced the important concept of amenability for Banach algebras in [20], where he proved, among many other things, that a group algebra L1(G) is amenable precisely when the locally ...
متن کاملSpectral Synthesis in Segal Algebras on Hypergroups
Warner (1966), Hewitt and Ross (1970), Yap (1970), and Yap (1971) extended the so-called Ditkin's condition for the group algebra L\G) of a locally compact abelian group G to the algebras L(G) Π L(G), dense subalgebras of L{G) which are essential Banach LHO-modules, LKG) Π L(G)(1 ^ p < co) and Segal algebras respectively. Chilana and Ross (1978) proved that the algebra L^K) satisfies a stronger...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Homotopy and Related Structures
سال: 2021
ISSN: ['2193-8407']
DOI: https://doi.org/10.1007/s40062-021-00282-8