2-Segal objects and algebras in spans

نویسندگان

چکیده

We define a category parameterizing Calabi–Yau algebra objects in an infinity of spans. Using this category, we prove that there are equivalences categories relating, firstly: 2-Segal simplicial C to Span(C); and secondly: cyclic Span(C).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak amenability of Segal algebras

Let G be a locally compact abelian group, and let p 2 1; 1). We show that the Segal algebra S p (G) is always weakly amenable, but that it is amenable only if G is discrete.

متن کامل

Biflatness and Pseudo-amenability of Segal Algebras

We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, L (G), and the Fourier algebra, A(G), of a locally compact group, G. Barry Johnson introduced the important concept of amenability for Banach algebras in [20], where he proved, among many other things, that a group algebra L1(G) is amenable precisely when the locally ...

متن کامل

Spectral Synthesis in Segal Algebras on Hypergroups

Warner (1966), Hewitt and Ross (1970), Yap (1970), and Yap (1971) extended the so-called Ditkin's condition for the group algebra L\G) of a locally compact abelian group G to the algebras L(G) Π L(G), dense subalgebras of L{G) which are essential Banach LHO-modules, LKG) Π L(G)(1 ^ p < co) and Segal algebras respectively. Chilana and Ross (1978) proved that the algebra L^K) satisfies a stronger...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Homotopy and Related Structures

سال: 2021

ISSN: ['2193-8407']

DOI: https://doi.org/10.1007/s40062-021-00282-8